The edge of the world, where would that be? Our great-great-great-many-times-great grandfathers and grandmothers pondered this question with conviction that it must be found somewhere. Of course, now we know there is no end or edge (though sadly some individuals in the world appear not to have grasped this idea yet), but there are still places where you can see the ‘end of our world’ and maybe feel like you’re there.
The ASPA instrument had quite an unconventional birth compared to the usual remote sensing instruments that we develop at BIRA-IASB. It was designed, built, tested, and used without any dedicated budget line. Still, to my experience, its realization is a huge success given the limited resources (both in time and money) that were available. And this could only happen thanks to the motivation and commitment of the engineering department, which backed the ideas of some scientists to turn a nice concept on paper into a working and reliable instrument, operated in a harsh environment.
Rather than adapting our environment, today we are learning to adapt ourselves. During confinement, the Royal Belgian Institute is adapting its slogan from "Science between Heaven and Earth" to "Science between Heaven and Home". We'll be sharing with you the little things that brighten our days in our new life and work routines. Find the new additions to the collection here.
It was to be expected that the effects of the corona virus on air quality in China would be more than noticeable. The lockdown of various cities in the Chinese province of Hubei, which started on January 23, 2020, halted an entire community. The impact on air quality, as a result of the strong reduction in the burning of fossil fuels, is clearly perceptible from space with the TROPOMI instrument.
During the previous months, the exceptionally large wildfires in Australia were frequently mentioned in the news. As Royal Belgian Institute for Space Aeronomy, we are involved in space-borne and ground-based instruments that can detect such fires from space, in an indirect way. But what does this mean exactly, and how are these observations meaningful?
Even three years after the end of the Rosetta mission, comet 67P/Churyumov-Gerasimenko still hasn’t revealed all its secrets. Close to the end of the mission, a comet particle entered the ROSINA/DFMS instrument, which was designed to study only comet gas. In doing so, comet scientists discovered a group of less volatile substances known as "ammonium salts". This discovery explains why comets seem to contain so little nitrogen: the nitrogen is trapped in these substances that are difficult to detect from Earth. Ammonium salts are particularly intriguing because they contribute to the building blocks of life.